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Abstract

A three-dimensional electromagnetic I’'1C code has been developed on the 512 node
Intel Touchstone Delta MIMD parallel computer. This code uses a standard relativis-
tic leapfrog scheme to push particles and a local finite- diffmmc.e time-domain method
to update the electromagnetic fields. Thecode isimplemented using the Genera]
Concurrent PIC algorithm which uses a domain decomposition to divide the compu-
tation among the processors. The 31) simulation domain canbe partitioned into 1-,
2-, or 3-dimensional subdomains. }’articles must be exchanged between processors as
they move among the subdomains. Thelntel Delta allows one to usc this code for
very-large-scale simulations (i.e. over 10°particles and 10¢ grid cells). The parallel
efliciency of this code is measured, and the overall code performance on the Delta is
compared with that on Cray supercomputers. It is shown that our code runs with
a high parallel efliciency of > 95% for large size problems. The particle push time
achieved is 115 nsecs/particle/time step for 162 million particles on 512 nodes. Com-
paring with the performance on a single CPUCray C90, this represents a factor of
58 speedup. It is also shown that the finite-difference method for field solve is signif-
icantly more efficient than transform methods on parallel computers. The field solve
time is < 0.7% of total time for problems with 77 particles/cell, and it is < 3% even

for problems with 7 particles/cell.



1 Introduction

Computer particle simulation has become astandard research tool for the study of non-linear
kinetic problems in space and laboratory plasma physics research. A })articlc-ill-cell (PIC)code
simulates plasma. phenomena by modeling a plasma as hundreds of thousands of test particles
and following the evolution of the orbits of individual test particles in the self-consistent elec tro-
magnetic field{1, 2]. Fach time step in a PIC code consists of two major stages: the particle push
to update the particle orbits and calculated the new charge and/or current density, and the field
solve to update the electromagnetic fields, Since the particles can be located anywhere within the
simulation domain but the macroscopic field quantities are defined only on discrete grid points,
the particle push uses two interpolation steps to link the particle orbits and the field components:
a “gather” step to interpolate fields from grid poiuts to particle positions and a “scatter” step to
deposit the charge/current of each particle to grid points.

While the particle simulation method allows one to study the plasma phenomena from the very
fundamental level, the scope of the physics that can be resolved in a simulation study critically
depends on the comput ational power. The computational time/cost and computer memory size
restricts the time scale, spatial scale, and number of particles that can be used in a simulation.
‘I'he cost of running three dimensional electromagnetic PIC calculations on existing sequential
supercomputers limits the problems which can be addressed.

Recent advances in massively paralel supercomputers have provided computational possibili-
ties that were previously not conceivable. For instance, the 512-processor Intel Touchstone Delta
operated at Caltech by the Concurrent Supercomputing Consortium has 512 x 16 Mbytes = 8.19
gigabytes or 2,048 gigawords of memory and a peak speed of 512 x 80 single-precision Mflops ==
40.96 single-precision gigaflops. The J}'], T3D from Cray Research, if upgraded to 256 nodes with
8 Mwords per node, would also have 2.048 gigawords and a peak speed of 38 gigaflops.

Previously, one- and two-dimensional electrostatic and electromagnetic P1C codes have been
implemented on MIMD parallel supercomputers using the General Concurrent PIC algorithm
(GCPIC) which uses a domain decomposition to divide the computation among the processors(3,
4, 5]. This and other decomposition methods have also been studied by Walker [6] and Azari
and l.ec[7, 8]. More recently, the GCPIC implementation of the particle push portion of a three-

dimensional electrostatic PIC code has been described and analyzed by Lyster et al[9]. In this



paper we extend the previous work and describe the parallel implementation of both the particle

and field stages of athree-dimensional clectromagnetic P1C code. The objectives of “this study
are to develop a three-dimensional electromagnetic PI C code for MIMD (1nultiple-i nstruction
multiple-data) parallel supercomputersandto test the full potential of using parallel computers
for very-large-scale particlesimulations.

The code we developed uses a standard relativistic particle push and alocal finite-difference
time-domain solution to the full Maxwell’s equations. This code is implemented onthe 512-
processor Intel Delta parallel computer using the GCPIC algorithm. The resulting paralel 31D
EMPIC code has proven to be very eflicient. Yorinstance, fora test simulation using 162 million
particles and 2.1 million grid cells on all 512 processors, wc have achieved a paralel efficiency
of 95% and a parallel push time of 115 nsecs/particle/time step. We also find that the finite-
diflerence field solve is significantly more eflicient than transform methods. Yor this test, run,
therun time is dominated by the push time and the field solve time is < 0.7% of the total
time. We have also runthe same code on Cray supercomputers (the code was compiled using the
Cray system’'s automatic vectorization and optimization, but no rewriting was clone to the code).
Comparing with the performance on a single processor Cray C90, the run time we achieved on
the Deltarepresents a factor of 58 speedup.

This paper is organized as follows: Section 2 discusses the algorithm usedin our 3D XM PIC

code and the parallel implementation: Section 3 analyzes the code performance through scaled

size problems, fixed size problems, and a comparison of the performance on the Intel Delta with

that on Cray supercomputers; and Section 4 contains a summary and conclusions.

2 A Parallel 31) Electromagnetic Pl C Code

2.1  The Algorithm

An electromagnetic P1C code attempts to simulate plasma phenomena using only the fundamental
physics laws, i.e. the Maxwell’s equations for the macroscopic field and Newton's second law for

individual particle trajectories:
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where relativistic effects are included in eq(5)(y =1 /v/1-V?2/c?). Eqs(1) through (5)are the
equations tobe solved in our 31) clectromagnetic PIC code.

in electromagnetic P1C codes, the field equations are often solved by transform methods such
as fast Vourier transforms (F¥'7T). However, transform methods are ‘(global” methods. in general,
global methods are not very eflicient for parallel computers because they involve a large amount
of interprocessor communication which may eventually become the bottleneck. For a code to run
efliciently in parallel, a method that updates the field purely from the local data is preferred. In
our code, the electromagnetic field equations a1« +olved using a charge-conserving finite-difference
leapfrogging scheme, which was used by Sandia National l.aboratories in the Quicksilver code
[10, 11] and by Bunemanetal in the Tristan code (12, 13]. This field solve scheme is described
below.

Fromthe Maxwell’s equations, one notes that eq( 1 ) will always be satisfied as long as the

charge conservation condition

ot
is satisfied. Hence, the electromagnetic field can be updated from only the two cur] Maxwell's
equations (3) and (4) if one can enforce rigorous charge conservation numerically. A rigorous
charge conservation method for current deposit is described in detail in{12]. In this scheme, one
obtains the current flux through every cell surface within a time step dt,dtJ™*1/2 by counting
t he amount of charge carried across the cell surfaces by particles as they move from & to 7741,

Next, the electromagnetic field is updated locally by finite-difference leapfrogging in time:

i dt ey x V] - arn e (6)
B i ey x i (7)

where the superscripts n+4 1/2 and n 4 1 represent the time level. This scheme requires the use

of a fully staggered grid mesh system in which E and Jdt arc defined at midpoints of cell-edges




while the B components are defined at the midpoints of the ce]l-surfaces. The staggered grid

mesh system, known in the computationa electromagnetics community as the Yee lattice [14], is

shown in Figure 1. It ensures that the change of B flux through a cell surface equals the negative

circulation of I around that surface and the change of 13 flux through a cell surface (offset grid)

equals the circulation of B around that surface minusthe current through it.

In the code, the trajectory of each particle is integrated using a standard time-ccmtcring

leapfrog scheme discussed in [1]. Letd =~V, and the leapfrog scheme for eq(5) is written as
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Ineq(8), F and B are interpolated from the grids to the particle positions. See Ref.[1] for

discussions on detailed steps for eq(8) and the centering of ™.

The basic algorithm for our electromagnetic 1’1 C code is as follows:

1) Set the initia conditions of the particles and fields

(The initial conditions must satisfy the two divergence Maxwell

equations (1) and (2));

2) Particle Move:

a) interpolate the electromagnetic field on the particle position

to obtain the force on each particle (gather);

b) Update the particle velocity and position fromeq(8) and (9);

3) Current Deposit (scatter):

Calculate the charge carried by particles across cell surfaces within the time step

to obtain the current flux Jdt through each cell surface;

4) Field Update:

Solve the two curl Maxwell equations by finite- diflerence leapfrogging eq(6) and (i’)

to update the electromagnetic field.

Steps 2) and 3) together form the particle push stage of the code.




2.2 Implementation on a MIMD Parallel Computer

Our 31) electromagnetic P1C code has been implemented on a MIMD parallel computer, the Intel
Touchstone Delta at Caltech. The Intel Touchstone Delta system consists of an ensemble of nodes
which are independent processors with their ownmemory connected as a two-dimensional mesh.
There are 512 numerical nodes. Fach node has a peak speed of 80 single-precision Mflops or 60
double-precision Mflops. The memory of each node is16 Mbytes, of which12 Mbytes are available
for the user’s code. Hence, the totalavailable memory is an eguivalent of 6.1Gbytes on all 512
nodes.

The code is implemented using the General Concurrent PIC (GCPIC) algorithm developed
by Liewer and Decyk[3]. The GCPIC algorithm is designed to make the most computationally
intensive portion of a PIC code, the particle computation, run efficiently on MIMD parallel com-
puters. nigh efficiency is achieved by minimizing interprocessor communication and balancing
processor computational loads. Ingeneral, the GCPIC algorithm uses two spatial decompositions
of the physical domain to divide the computation efficiently among paralel processors: a pri-
mary decomposilion to optimize the parallel particle push computations (i.e., particle move and
current deposit) and a secondary decomposition to optimize the parallel field computations (i.e.,
field update). In the primary decomposition,each processor is assigned a subdomain and al the
particles and grid points in it. When a particle moves from one subdomain to another, it must be
passed to the appropriate processors, which requires interprocessor communication. However, the
primary decomposition is chosen so that both interpolations between the particles and the grids
(gather/scatter) can be done locally, e.g., with no interprocessor communication. To ensure that
the gather/scatter can be performed localy, each processor stores guard cells, e.g., neighboring
grid points surrounding a processor’s subdomain which belong to another processor’s subdomain
(Fig. 2). Interprocessor communication is necessary to exchange guard cell information. Depen -
ing on the method chosen for field update, the secondary decomposition can be either the same
as or different from the primary decomposition. If the decompositions are distinct, additional in-
terprocessor communication is necessary to move the grid data between the push and field stages
at cach time step [3, 15].

¥or our 3D EM PIC code with finite-difference field solve to have load balance, the primary

decomposition subdomains should have roughly the same number of particles and the secondary
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decomposition subdomains should have the same number of grid points. When the grid is regular
and the particle distribution is uniformn, equal volume subdomains are optimum for both the push
and field stages, ‘1'bus, for this case,the primary and secondary decompositions are identical.

Fig. 2 illustrates a 2-dimensional subdomain. ¥.ach processors subdomainis boundedin each
dimnension by

Tleft <z < Tright (IO)

The grid points within this subdomain are then
teft <1< dyight (11)

ineach dimension, where is = INT(21ep) 41 and tright = INT(xyight) (%1e 51 =INT(21e81)/
Gright = INT (2pigne) — 1 1F Tieft/Tright lies exactly 011 the grid p oint). Note that ijes: and tright
denote the grid points on the global grid. 111 the code, the grid array indicies withina processor
are based on the ‘local” indexing. As illustrated inFig. 3, in addition to the grid points from
iles1 10 irighy, €aCh processor alsostores guard cells. If the number of guard cells on the left-side
and right-side in each dimension are ng; and ng. respectively, then the total grid points stored
in cach processor are from tiesi — 1gi tO tright + Ngrineachdimension. Thenumber of the guard
cells needed is determined by the particle weighting scheme as wellas the algorithm to update
the field. In this code, we use linear interpolation for particle weighting.

in our code, the computation domain canbe partitioned into 1-, 2-, or 3-dimensional sub-
domains (“slabs’, “rods’, or “cubes’ ) [9]. Fig. 3 shows the particles in typical 1-, 2-, and
3- di men sion al domain decompositions. The particles are colored according to processor. Yor
a given problem, the optimal domain partition is chosen by considering many factors such as
the problem size, the homogeneity of the problem, the nummber of processors that will be used,
mac.rose.epic drifts, etc. Sine.c “productive’ calculations are performed within a subdomain while
interprocessor communications are through subdomain surface, communication cost correlates
with the ratio of subdomain surface area to subdomain voluine SV. For the performance anal-
ysis runs in this paper, we shall usc the cubicsubdomain because it has the minimuin surface to
volume ratio S/V.

Figure 4 shows the flow chart of our parallel 31> electromagnetic P1C code. The main loop uses
six major subroutines. Particle Move, Current Deposit, and Field Update for FE and B (represented

by the rounded blocks in Fig. 2) have been discussed in the last section. They are the essentia




computation blocks in a sequential EM PIC code. 011 a parallel computer-, cach processor executes
these operations independently using its own data arrays, The computations are linked together
through 1nessage-passing and global communications. The code has three major message-passing
subroutines: [Particle Trade, Guard Cell Summation, and Guard Cell Fxzchange (represented by
the five rectangular blocks), The global boundary conditions arc also imposed in these three
subroutine to avoid additional loops over grid points and particles. Currently our code uses
periodic boundary conditions. Hence, we have the processors logically connected periodically
in the initial subdomain sctup (e.g. the processors atright-most domain is connected to the
processors at left-most domain). Therefore, periodic global boundary conditions are automatically
imposed through communications between the left-most and right-most processors. Figure 4 also
shows the two main stages for our parallel PI1C code. The particle push consists of Particle Move,
Particle Trade, Current Deposit, and Guard Cell Summation. The field solve consists of Ficld
Update and Guard Cell Exchange for F and /§ fields.

Guard Cell Ezchange is usedto update the ¥ and 13 fields at processor boundary cells and to
impose the global periodic boundary conditions. The field grid and field guard cells are illustrated
in Fig. 2. It is obvious from the finite difference scheme (eq(6) and eq(7)) that the grid points
at g1 and iright need the information at the grid points i s --land %right 41 respectively in
order to beupdated. Hence, the field update nceds one guard cell surface on both the left and
right side. Thelinecar particle weighting scheme aso requires one guard cell surface for interpo-
lating the field to the particle position. Therefore, we take ng; = ng, = 1. In order to fill the
guard cells with the updated F and B, the F and B at Uess and 4,05, €rid points need to be
exchanged between the neighboring processors. The exchange of guard cells is done through a
loop over the three dimenions X, y, and z with information exchanged separately in each of the
three dimensions, Within the loop, the guard cells are exchanged in one dimension only. By
performing the communication in each dimension separately, only two communication buffers and
six communication calls are needed. (If all threedimensions were considered simultaneously, 26
communication buffers and calls would be needed([9].) ‘] "he corner guard cells are also filled au-

tomatically after the three loops, The psuedo code for guard cell exchange subroutine is as follows:

Jori=1, 3 dimensions do




pack the fields at 7jc 5 and tright SUrfaces into left-ancl right-going buflers
send left- and right-going bufler to left- and rigllt-neighbors

receive from right- and left-neighbors

unpack and fill thetright + 1 and ije5¢ + 1 surfaces

enddo

Guard Cell Summation adds the currents deposited in guard cells to the proper cells in the
neighboring processors and aso imposes global boundary conditions. The current grids and guard
cellsare illustrated in Figure 2. When depositing current, those particles near a subdomain bound-
ary will contribute currents to grid points within the processor's subdomain as well asthe grid
points which are owned by neighboring processors. Since the current is defined atthen+ 1/2
time level, the calculation of J™1 /2dt needs particle positions at both then + 1 and = time step
("1 and ). To save storage as well particle communication, #* is obtained by moving &"+!
backward in time in current deposit, which occurs after particle trade. Hence, for those particles
which were traded at then4 1 time step, their £"slie outside the subdomain of their current
processor. Therefore, instead of one guard cell surface as required by the linear weighting scheme,
one needs two guard cell surfaces on both side of the subdomain for current deposit, ng;= 2
and ng, = 2. (Note this is based on the usual constraint on time step in explicit PIC codes:
vdt < cell length). Yor the special case that zy, lies exactly at the iz, grid point, considering
vdt < cell length, only one guard cell surface cm the left side would besuflicient (ng; = 1 and
ngy = 2), The guard cell currents need to be passed to the neighboring processors and added to
the currents at the appropriate grid points of the neighboring processors. As in the Guard Cell
Frchange described above, this guard cell cominunicationis done separately for each dimension
under a loop over dimensions x, y, and z. Guard cell contributions to the interior corner cells
are automatically properly summed for after the three loops. The psuedo guard cell summation

subroutineisas follows:

Yori=1, 3 dimensions do
pack currents in Ueft— ng; t0 ijesy --1 and tright4 1 t0 tright + ng, surfaces

into left- and right-going buffers respectively




send left(right)-going buffer toleft(right) neighbors

receive buffers fromn left(right) neighbors and store in receive-left(right) buffers
add the receive-right to currents at tright — ng7 to tright — 1 surfaces
add the receive-left to currents at 7.5+ 1 toi.5.4ng; surfaces

enddo

Note that for situations where the domain is not partitioned in a certain dimension, eg., if
one-dimensional “slab” or two-dimensional “rod” decompositions had been used instead of three-
dimensional “cubes”, then it is not necessary to do any interprocessor communication in this
dimension. in this case, the code still loops over this dimension in the guard cell communications
inGuard Cell Frchange and Guard Cell Summation routines in order to impose global periodic
boundary conditions for the field and thecurrent. However, Nno interprocessor communication
occurs[9].

Particle Trade is used to trade particles between processors and impose global boundary con-
ditions. After the Particle Move, each particles new position is checked against the subdoinains
boundaries [eq. (10)]. If a particle is found out of bounds on theleft (right), it is placed in a
left (right )-going buffer[3]. When all particles in a processor have been checked, the buffers are
passed to the neighboring processors, and at the same time, incoming particle buffers are received
fromthe neighboring processors. The incoming particle bufler is then unpacked to fill in holes in
the local particle array. Theparticle trade subroutine is a modification of theone described by
Lyster et al[9]. For a detailed discussion of the method used to pack/unpack particle buffers, sce

Liewer and Decyk[3]. The psuedo code for the particle trade subroutine is as follows:

Fori= 1, 3-dimensions do
for all particles do
apply the periodic global boundary condition
if particle position < acs, pack into left-going bufler
if particle position > x,;4s¢, Pack into right-going buffer
| send left(right)-going buffer to left(right) neighbor

receive buffers from left(right) neighbors andstore in receive-left(right) buffers



check particle positions in receive buflers:
if a particle is at < @jef¢,
remove from receive-right and pack into left-goillg buffer
if aparticle is at 2 right,
remove from rcccive-left and pack into right-going buffer
if there are particles need to be passed further, go to 1
unpack receive-right /recei ve-left bufler into the local particle array
end do particles

end do dimensions

Note that, as in the guardcell routines, if the domain is not partitioned in a certain di-
mension, after performing global boundary conditions, Particle Trade exits that dimension loop
without pm-forming any interprocessor communication. The number of the particles in the receive-
left(right) bufler is also checked before the bufleris unpacked to ensure that it would not overflow
the local particle array. Finally, the step that checks particle positions in the receive-left(right)
bufler is necessary for situations that particles may move more than one subdomain in a time
step. Yor explicit PIC codes with static domain decomposition such as our code, particles will
never travel more than one subdomain per time step due to numerical stability constraints on the
time step (volt < cell length). However, particles may travel more than one subdomain per time
step in PIC codes with dynamic load balance where the domain wnay be repartitioned every time

step [] 5) or in implicit PIC codes where large dt may be used.

3 Performance Analysis

To analyze the performance of our paralel 3D EMPIC code, a simple test case was used: a
relativistic. counter streaming electron beam instability. In this test case, two equal electron beams
are set to counter stream in the x direction with drifting velocities vg=30.4¢c. ‘I'he electrons
within each beam follow a Maxwellian distribution with thermal velocity v;=0.05¢. The ions
are considered as a fixed background. This counter streaming system generates the well-known

two-stream instability. While the classical two-stream instability is an electrostatic instability, we
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find the instability generated hereis electromnagnetic in nature. Since the drifting speed is close to
the speed of light, the unstable wave gencrated has comparable electric and magnetic fields. Fig.
5 shows a typical simulation result in the (2, z,v,) phase space. This test run used 8 x 1x 2=16
processors. The top pancl shows the domain decomposition and the initial particle distribution
with electrons colored by processor. Thesecond and third panels show the electron distribution,
colored by beam population, at t= O and{= 47wljC1 respectively. The inter-mixing of the two
beam populations caused by the instability is apparent inthe third panel.

To evaluate the code performance, we have measured the total code time per time step loop 7ot
as well as the times spent by each of the six major subroutines for a series of runs. Let us demote
Triove s Teurrents Tidupdates 7’tmde,’1‘gcsm,7‘gd, as the tiine spent by particle move, current deposit,
Jield update, particle trade, guard cell current summation, and field guard cell exchange respectively.
Since each processor runs the code with dlightly diflereut times, the times wc measured are the
maximum processor times on a parallel computer. Since the clock calls introduce synchronization,
1t was measured with all the subroutine clocks turned off. There will be a small difference
between the measured 73, and the value of Thioue 4 Teurrent + Tytdupdate + Tirade 4 Lgcsm + Tgesi-

Iroin the measured subroutine times, wc define the particle push time (which includes the
titnes on moving particles, depositing currents, applying boundary conditions, and related inter-

processor communications as shown in Fig. 4):
push ) ) , o
TPt = 7moue + 7irade + 7currcnt + lgcam (12)

and the field solve time (which includes the times on updating the E and B fields, applying

boundary conditions, and related interprocessor communications as shown in Fig, 4):
TI = T gupdate + Toept (13)

We also define the guard cell/boundary condition time as
79 = Tyeam 4 Tgeq (14)

and the total communication /boundary condition time as

chc - Tt'rade 4 Tgrsm -} Tgrﬂ = Ttrade 4 79¢ (]5)

If only one processor is used, 7°¢*¢(1) is simply the time spent on the global boundary conditions,

When multiple processors arc used,7'*®(N, > 1) is the sum of the time spent by the code on

11




communicationsand global boundary conditions.l.ct us denote 7% to be the commmunicat ion time
spent for the purpose of global boundary conditions, § thearea of the global domain surface, ant]
Ssum thesum of the arcas of all subdomain sulfate. The fraction of the global boundary condition
time within 7'¢*¢ scales as

,],bC/chC ~ S/Ssum (]6)

When the number of processors used is muchlarger then one, 7% “is dominated by the ‘(pure”
interprocessor communication and hence, it is a good measure of the parallel communication cost.

The performance of our parallel 3D electromagnetic P1C code is measured in three ways: 1)
scaled problemsize analysis; 2) fixed problem size analysis;, and 3) comparison of the performance
011 the Intel Delta with that on ‘single processor Cray supercomputers.

An important measure of the performance on a concurrent computer is the parallel efficiency
¢ which measures the eflects of communication overhead and load imbalance[l 6]. If there were no
communications involved and the processor loads were perfectly balanced, the parallel efficiency
would be ¢=100%.In this paper we shall focus only on the effect due to communication overhead.
The simulation runs used in this scction al have near-perfect load balance because the particle
distributions in these runs are nearly uniform. (Dynamic load balance for non-uniform particle

distributions has been investigated in a2 P1 C code by Yerraro et al[15].)

3.1 Scaled Problem Size Analysis

We first study the parallel efliciency for very large simulations using a scaled problem size analysis.
in ascaled problem size analysis, wc keep theproblem size on each individual processor fixed
while increasing the total number of processors, The total problem size is then proportional to
thenumber of processors used. The paralel efliciency in a scaled problem size analysis is defined

as

ON

Tiot(N)N

where Ty,¢(N ) is the total loop time elapsed on a parallel computer using N nodes.

«(N) (17)

We consider two cases for scaled problem analysis. in both cases, cubic subdomains arc used
and the problems arc scaled up evenly in the three dimensions. In the first case, S1, each node
has 32 x 32 x 32 cells and 2.22 x 10° particles (~ 7 particles/cell). When Sl isloaded on al 512

nodes, the size of the total problem becomes 256 x 256 X 256 (16.8 million) cellsand114 million
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particles. In the sccond case, S2, each node has 16x 16x 16 cellsand 3.16 x 10° particles (~ 77

particles/cell). The size of S2 on al 512 nodes isthen128 X 128 X 128 (2.1 million) cells and
162 million particles. We note that the memory size required torun S1 and S2 on each node are
10.4 Mbytes and 11.6 Mbytes respectively. Considering the memory available for calculation is
12 Mbytes per node on the Delta, S2 represents about the largest problem that one can fit onto
the Delta system. When S2 is loaded to all 512 nodes of the Delta, the total memory size is an
equivalent of 5.9 Gbytes.

The parallel efficiencies for S1 and S2 are shown in Fig. 6 (left axis) as a function of the
number of processors N,. The results show that a high parallel efficiency of ¢>95% has been
achieved for both §1 and S2. As mentioned before, since we have perfect load balance for the
test runs, the efliciency is degraded only by interprocessor commuunications. Hence, the ratio of
7% /Tyris also shown in Fig. 6 (right axis, note scale change). Wile.11 only 1 node is used,
1<*¢(1node) consists of only the global boundary condition time. The total boundary condition
time is 7°*(1node) ~ 0.0257 jo1(1n0de) for S1and 7°°*°(1node) ~ 0.02174,¢(1node) for S2. When
thenumber of processors is N, >1, the mgjor part of 7¢be 4s for “pure’ parallel communications.
(Yor the scaled problems here, from eq(16), we have 7%¢/7°% ~ 1 /N}? ) We find that 7' takes
less then 5% of 73, . Not surprisingly, when the number of processors usedis much larger than
1, ¢(Np >> 1) ~1-1°/T,,.

in Iig. 7, we plot the loop time 7ot particle push time 7%#s% ficld solve time 7'/%¢!4 aswell as
the communication/boundary condition time for particle push7y,44c 4 7gesm and field solve Ty 4.
(Fig. 7a shows the times for S1 and Yig. 7b shows the times for S2.) We find 7},,is dominated
by the particle push stage of thecode (7***), which stays almost constant as the number of
processors is increased. Inboth cases, the field solve only represents a very small fraction of the
total time: 7794 11, < 304 for S1and Tf{gld/f}giSO.GG%} for S2. As a test, in some other
simulations wc have used ~ 5 particles/cell, Fvenat such a low particle number/grid cell ratio,
we find the field solve still takes < 4% of the total timme. As expectled, the local finite difference
field solve runs very fast in paralel P1C codes.

One of the most important measure of a P1C co de’s speed is the particle push time per particle
per time step ?¥sh or the total loop time per particle per time step #4,. Yor S1 and S2, particle

pushtimes and the total loop time on the 512 node Dclta are as follows:
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tPush v 128 (1, =~ 131) nsecs/particle/time step for S1(1 14 million particles, 256°grid cells)
174sh o 115 (14,4 =~ 116) nsecs/particle/time step for S2(162 million particles, 128°grid cells).

To analyse the particle push stage of thecode,inkig. 8 wc show times spent in the various
portions of particle push for S2 on the log scale. Since each processor has approximately equal
number of particles in the scaled size problems, the times spent by “productive” particle compu -
tations, particle move and current deposit, arc independent of the number of processors used. ¥or
practical applications, particle move and current deposit, are the most computational intensive
portions of the code, For the $2(512node) case, Tinove /17" 2 2.22( Teurrent/1P**") ~ 0.67, A's
for the communication times 7%ade and Tygeom, Tirade > Tygesm (Tirade 1047 peem at Np = 512)
because particle trade has a loop over al the particles. Dueto the large problem size on each
processor, Ttrade and Tgesm arc negligible within 77¥** (At Np = 512: Tirade/Tmove ~ 0.04,
Tocsm/Teurrent =~ 0.01, and (Tirade 47gcom )/ +220.03). Hence, although 7Tirade and Zydsm
increases somewhat as the node number increases, this increase of communication dots not affect
,Push

To analyst the field solve stage of the code, inktig. 9 wc compare the field solve times for
S1 and S2. The time spent to update the field 7 fidupdate IS independent of Npbecause scaled
problems have equal number of grid points per processor. However, unlike the particle push, wc
find the communication time Ty is larger than 1'f1dupdate for both S1 and S2 when N, >1. (At
512 nodes, Tgcfi/Tfidupdate =~ 4.6 for S1 and Tgcs1/7 fidupdate =~ 1.8 for S2, ) This is because the
finite-diflcrence fieldupdate is very fast and the number of grid points within each processor is
not large enough. Since Field Update operates ongrid points within a subdomain while Guard
Cell Ezchange operates on grid points over a subdomain surface, the ratio of Tycst/T'ftdupdate
correlates with V. Through other test runs, wc find that one usually needs SV < 0.15 to
achieve Tges1/Tfidupdate < 1. For the test runs used here, wc only have SV = 0.1875 for S1i
and SV = 0.375 for S2. Nevertheless, since the code time is dominated by 77%shand7/ield js
negligible in Tty 7441 only has a minimum effect on the overall code performance.

The timing results in Figs. 8 and 9 show that the guard cell communication times (7ycsm
and7y.p) increase as the number of processors increases. However,the guard cell number and

the size and number of communicated message is determined only by the SV ratio and, thus,
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independent of the number of processors for scaled problems. Hence, the observed increase of

Tgesm and Ty g1 1S apparently a result of the Delta communication network contention.

3.2 Fixed Problem Size Analysis

in a fixed problem size analysis, we compare the times to run the same problem on an  ncreasing
number of processors. Since the total problem size is fixed, the problem size on each ndividual
processor decreases as the number of processors N, increases. For a problem that cau »>e fit into

a minimum of N,,i, processors, the parallel efliciency for N > N, processors is defined by

_ Ttot(jvmin)jvmin
((N) o rjwtOt(]\r)N (]8)

Wc consider the following two fixed size problems. The size of the first problem, 1, is
3’ 2°= 32768 grid cells and 2.22x 10°particles (~ 7 particle/c.ell). In the second problem, }2, we
usc the saine number of grid cells but increase the total number of particles to 2.52 X 108 (~ 77
particle/cell). Note the size of I'listhesamne as that of S1(I1node), which can be fit on on asingle
processor on Delta. The size of 12 is the same as that of S2(8node), which requires a minimum of
N,.in =8 processors to run. F1and I'2 were run using processors from N,,:Nmm to N, = 512.
31 domain partitions arc used to decompose the total domaininto A’, subdomains of equal size.

InI'igure 10a, we plot the parallel efficiencies for 1'1 and 11'2 (left axis) and the ratio of 7% /7,
(right axis, note scale change) as a function of processor number N,. The loop time 7}, particle
push time 7Pk and field solve time 7774 are shown in Figure 10b. The results show that
the efliciency decreases as the number of processors increases. This isto be expected because,
for fixed size problems, the increase of N,reduces the computations on each processor while
increases interprocessor communications. As shown in Figure 10, the increase of communication
overhead greatly affects the performance for small size problems such as F1.Yor instance, when
we divide I'Tina 31) partition using 8 x 8 x 8= 51? processors, each processor will only have a
computation domain of 43 grid points and about 430 particles. With such a small size problem
on each node,the communication time becomes larger than the computationtime, which causes
a low parallel efliciency of ¢(512)~ 27%. On the other hand, we find that ¥2 performs much
better than1'1 on multiple nodes due to its larger problemsize. When FF2 is divided into 512
processors, cach processor still has onaverage ~ 4922 particles, which is sufficient for computation

time to dominate 7. and for the paralel efliciency to reach ¢(512)~ 76%. As expected, for P1C




simulations, a parallel computer is best suited only for problems with a large enough size (i.e.
total number of particles).

To examine in detailthe communication costs for fixed size problems, in Fig.11we show
Trades 79, and 7% normalized by 71 as a fun ction of N, (left axi S). (Recall that Tirade is the
communication and boundary condition time associated with particles and 79° is the communi-
cation and boundary condition timne associated with field and current guard cells, ) Yor fixed size
problems, increasing the processor number increases the subdomain surface to volume ratio SV,
Since guard cell communication directly correlates with S/V and particle communication is also
somewhat related to SV, in Fig. 11 wc have aso plotted SV as a function of N, (right axis).
Yor ¥1(Fig.1 1a) which has ~ 7 particles per cell on average, the guard cell communication time
79¢ dominates the total communication time7'*¢, On the other hand, for ¥2 (Fig. 1 1b) which
has ~ 77 particles per cell, we have Tirade > 19, Due to the larger number of particles used in
}"2,’!‘Cb°/’1’,o, is much less sensitive to the number of processors used and to the surface to volume
ratio SV. Therefore, to achicve a high parallel efliciency for PIC codes, the key parameter one
can adjust is to make sure there are enough particles per processor.

Another factor that affects the particle communication time 7344 iS the numnber of particles
traded between processors. in Fig. 1 2, we plot Ttrade/Ttot as a function of the percentage of
particles traded pertime step. Yor this analysis, we use F2(64node) and F2(256node) as an
example. Comparing to F1 and the scaled size problems (S1 and S2), the ¥2 cases are the
problems that need to trade more particles duc to their large SV and large number of particles
percell. To get an even higher percentage of particles traded per time step, wc increase the time
step dt.in ¥ig.12, the number of particles traded in }'2(64node) is increased from 1.7% to 11.4%
and that in }2(256node) is increased from 3.2'%0 to 20.5% asdt is increased. While the percentage
of particles traded is increased about 7 times, we find 7i,q4e/7101 Stay as amost constant, This is
because 7trade is mainly spent on the loop over particles to check particle positions, which is not
affected by the number of particles traded. Hence,the performance of the code will not degrade
for problems that require a large fraction of particles to be traded. l.arge fraction of particles
may be traded in problems involving nonuniform particle distributions where small subdomains

must be used for load balance.,
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3.3 Performance on Delta vs. Performance on Cray

Finally, we compare the overall performance of the code on Delta with that on single processor
Cray supercomputers. T'wo Cray computers were used for this analysis. The first one is the Cray
Y-MI" atJPL, which has a memory limit of 16 Mwords or 128 Mbytes. The secondone is the
Cray C90 at NASA Ames(The Von Neuman). The memory limit on the NASA Ames Cray C90
is 128 Mwords or 1.024 Gbytes. The memory limit onIntel Delta is about 6 times larger than
that of a single CPU Cray C90.

Other thanthe message-passing and global communications, the Cray version of the code is
identical to the parallel version. ‘I’he Cray version of the code is compiled using the Cray Fortran
compiling system’s automatic vectorization and optimization. However, no re-writing was done
to optimize and vectorize the gather/scatter for the Cray. Hence, the code performance on Cray
is not the best performance one can get from a Cray. All the Cray runs were carried out on a
single CPU.

In Figure 13 we plot the total run time 7}, for the S2 case as a function of the “problem size”.
The unit of the problem size is defined as the problem size on 1 node of the Delta computer. For
S2, the size unit is 3.16 x 10° particles and 16° grid cells. Note that while the problem size on the
Cray processor varies, the problem size per processor on the Delta is constant because the number
of processors increases with problem size.Due to the memory limits on the Cray supercomputer,
not all S2 problems can be run on the Cray. For instance, the largest S2 problem we ran on the
Cray C90 is size ~91.13 (72°grid cells and 2.9 x 107 particles),

To compare the performance, wc define the Delta specdup as

S e &
For small problems, the Cray supercomputer performs much better than the parallel computer.
Comparing to Cray C90, the speedup factor at size=:1is Speedup~ 0,12 for S2. However, as
the problem size increases, the time spent on the Cray increases approximately linearly in the
log scale. While on the Delta, due to the high paralel efficiency, the total run time for S2 stays
almost constant as both the problem size and processor number arc increased. At stze= 64, wc
find the speedup of the Delta over the Cray C90 is Speedup ~ 7.42 for S2. Extrapolating the run
times on Cray to size= 512, if one had a Cray C90 or a Cray Y-MP large enough to run the

size = 512 problems, then the speedup of the Delta over the Cray C90 would be Speedup ~ 58.4
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and the speedup over the Cray Y-MP would be Speedup ~116.6. We have also performed the

same analysis for the S1 case,and obtained similar results.

4 Summary and Conclusions

A MIMI | parald 3D electromagnetic P1C code has been developed on the 512 node Intel Touch-
stone Delta system. in the code,the particles are pushked using a standard relativistic leapfrog
scheine and the electromagnetic fieldis updated locally using a rigorous charge-conservation
finite-difference method. The code is implemented using the Genera Concurrent PIC(GCPIC)
algorithm[3] which uses a domain decompositionto divide the computation among the proces-
sors. Three major message-passjng operations, particle trade, guard cell exchange, and guard cell
summation, are used to link the computations in different processors together. With 12 Mbytes
memory per node and a total of about 6 Gbyteson al 512 nodes available to users, the Intel
Delta system allows our code to run simulations using over 108 particles and10° grid cells. The
paralel efliciency of this code was evaluated using both fixed problem analysis and scaled problem
analysis. It is shown that our 3D EMPIC code runs with a high parallel efliciency of ¢ > 95%
for large size problems. The particle push time we have achieved is 115 nsccs/particle/time step
for 162 million particles on 512 nodes. The overal performance of the code on the Delta is also
compared with that on Cray supercomputers. Comparing with the runs on a Cray C90, we have
observed a factor of 58 speedup on the Delta for our test runs.

We find, for parallel computers, a finite difference field solve is significantly more efficient than
fast Fourier transforms. Our result shows that the finite difference field solve takes < 0.7% of
the total CPU time for problems with about ~ 77 particles/cell and <3% for problems with~ 7
part icles/cell. ‘Jhe field solve time is < 4 % even for problems ~ 5 particled/cell. This implies
that the effect of load balance for the field solve is not nearly as important as that for the particle
push, Hence, when the code is applied to problems with nonuniform particle distributions, a high
paralle] efficiency can still be achieved as long as the domain is decomposed according to particle
load balance.

As expected, the major factor that can degrade the code’'s performance is the number of
particles per processor. However, we find the “bandwidth” on number of particles/processor is

fairly large for high efficiency simulations. For instance, when using 256 to 512 processors, our
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test runs have a parallel efliciency ¢ > 95% for > 2 X 10° particles/processor, ¢ ~ 86% for ~ 2 X 104

particles/processor, and ¢ ~ 76% even for small problems with only ~ & X 10°particles/processor.
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Figure Captions

Fig. 1. The Yee lattice showing the location of the field components on the staggered,
finite-difference mesh, where grid points are at the corners of the cell shown. The electric field
and current components arc defined at the mid-points of cube edges, while the magnetic field
components are defined at the c.aters of cube faces.

Fig.2.Domain decomposition of a two-dimensional PIC simulation for4 processors showing
processor subdomains and guard cells (shaded). ¥ach processor is responsible for updating all
the particles and grid points in its subdomain. Each processor also stores field information for
the guard cells surrounding its subdomainto minimize interprocessor communication.

Fig. 3. Domain decompositions for 1-, 2- and 3-dimensionalsub domains with particles colored
by processor.

(@ 1-D partition for 4 processors. (b) 2-1» partition for 16 processors; and (c) 3-1) partition for
64 processors,

Fig. 4. Flow chart for the parald 3D electromagnetic code showing the “particle push” and
"field solve” stages. The routines in the rounded boxes require no interprocessor communication,
while the routines in the five rectangular boxes involve interprocessor communication, Global
boundary conditions arc also imposed in these “guard cell” routines.

Fig. 5. Electron (X, z, vz ) phase space from the. test case used in the performance analysis, a
relativistic electron two stream instability.

Top: Electrons at t==0 colored by processor showing the domain decomposition in the x-z plane.
Middle: Flecirons at t=0 colored by populations showing two counter streaming electron beams
(drifting velocity vg=40.4¢).

Bottom: Electrons at tw,, = 47 colored by species showing the phase-space mixing of the beams
caused by the instability.

Fig. 6. Code performance for two scaled problemns where the problem size increases with the
number of nodes, N,,. Per node, Case S1 has 114 million particles and 256°grid points and Case
S2has162 million particles and 128°grid points. The paralel efficiency (left axis) is very high
> 9570 even on 512 processors. The right axis shows 7. /730 (right axis) versus the number of
processors where 7°,., defined in eq. (]5), measures the communication overhead.

Fig. 7. Comparison of run times of different code portions for scaled problems S1 (a) and S2(b).
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Shown arc thetotal loop time, 73.¢; the particle push time, 7P the particle communication
time (trade, current guard ccl], and boundary conditions), Ttrade + Tgdsm; the field solve time,
pficld, and the ficld communication time (field guard cells), Tyqs.

Fig.8. Analysis of the parallel push stage for S2. Plotted are timesspent in the four
subroutines of the particle push stage: particle move Tyove, particle trade Ztrade, current deposit
Teurrent,current guardcell + boundary conditions 7gdsm» and the total particle push time 7%k,
The particle move and deposit dominate the computation.

Fig. 9 Analysis of the field solve stage for scaled problems S1 and S2. T'ime spent in portions
of the field solve: ficld update 7 fidupdate and field guard cell+ boundary conditions, 7gcsm. For
both cases, the time spent in interprocessor communication dominates, but the total cost of the
field solve is so low that the total code efficiency remains high.

Fig. 10. Code performance for fixed-sized problems¥1and F2 vs. the number of processors
N,.The problem size pcr node decreases as the number of processors increases; increasing the
interprocessor communication.

(@) Parallel efliciency (open symbols, left axis) and the communication time 7'¢%¢/7},, (right axis,
filled symbols). (b) Total time 7}, time for push stage 7P*sh, and time for field solve Stage 7'/ield
versus N,. The push stage dominates for both cases.

Iig. 11, Analysis of thecommunication /boundary condition times (left axis) 7'9¢ =7, 4
Toosty Tirade; and T = Ty, + Tirade for fixed size cases I'1(a) and F'2 (b) vs. the number of
processors Ny. In (), for F1(~ 7 particles/cell), the guard cell time 79°¢ exceeds the particle trade
time, whereas in (b) for 2 (~ 77 particle.s per cell), the times arc comparable. Also shown is the
subdomain surface to volume ration SV. Both S/V and the communication costs increase as
the size of the subdomain shrinks with increasing N,,.

Fig.12. Ratio of time spent in particle trade routine. (7irade) to total loop time 7} asa
function of the percentage of particles traded per processor per time step. The timings arc for
the F2 case, which trades the most particles comparing to the other cases. The ratio is < 10%
and is insensitive to the actual percentage traded because most time is spend in the loop which
checks all the particles to determine which need to be traded.

Fig.13. Comparison of the Delta and single processor Cray YMP and Cray 90 performance

versus problem size. ¥or both Crays, the run time increases with the problem size since only one
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processor was used. Ior the Delta, the number of nodes was increased with the problem size so

the problem size per processor remained constant (Case S2). The sequential Cray code was not

optimized for vectorization other than complied usingthe Cray systems automatic vectorization.
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